41 research outputs found

    Machine Precision Evaluation of Singular and Nearly Singular Potential Integrals by Use of Gauss Quadrature Formulas for Rational Functions

    Get PDF
    A new technique for machine precision evaluation of singular and nearly singular potential integrals with 1/R singularities is presented. The numerical quadrature scheme is based on a new rational expression for the integrands, obtained by a cancellation procedure. In particular, by using library routines for Gauss quadrature of rational functions readily available in the literature, this new expression permits the exact numerical integration of singular static potentials associated with polynomial source distributions. The rules to achieve the desired numerical accuracy for singular and nearly singular static and dynamic potential integrals are presented and discussed, and several numerical examples are provide

    Singular Higher Order Divergence-Conforming Bases of Additive Kind and Moments Method Applications to 3D Sharp-Wedge Structures

    Get PDF
    We present new subsectional, singular divergence conforming vector bases that incorporate the edge conditions for conducting wedges. The bases are of additive kind because obtained by incrementing the regular polynomial vector bases with other subsectional basis sets that model the singular behavior of the unknown vector field in the wedge neighborhood. Singular bases of this kind, complete to arbitrarily high order, are described in a unified and consistent manner for curved quadrilateral and triangular elements. The higher order basis functions are obtained as the product of lowest order functions and Silvester-Lagrange interpolatory polynomials with specially arranged arrays of interpolation points. The completeness properties are discussed and these bases are proved to be fully compatible with the standard, high-order regular vector bases used in adjacent elements. Our singular bases guarantee normal continuity along the edges of the elements allowing for the discontinuity of tangential components, adequate modelling of the divergence, and removal of spurious solutions. These singular high-order bases provide more accurate and efficient numerical solutions of surface integral problems. Several test-case problems are considered in the paper, thereby obtaining highly accurate numerical results for the current and charge density induced on 3D sharp-wedge structures. The results are compared with other solutions when available and confirm the faster convergence of these bases on wedge problem

    Computation of Potentials on Curvilinear Elements

    Get PDF
    This paper presents new techniques to compute with an extremely high accuracy the moment integrals of high order vector basis functions on curved patche
    corecore